On the fixing number of graphs with abelian automorphism group
نویسنده
چکیده
The fixing number of a graph G is the cardinality of a smallest set of vertices of G that is not fixed by any non-trivial automorphism of G. In this paper we investigate the fixing number of finite graphs with abelian automorphism group.
منابع مشابه
On Marginal Automorphisms of a Group Fixing the Certain Subgroup
Let W be a variety of groups defined by a set W of laws and G be a finite p-group in W. The automorphism α of a group G is said to bea marginal automorphism (with respect to W), if for all x ∈ G, x−1α(x) ∈ W∗(G), where W∗(G) is the marginal subgroup of G. Let M,N be two normalsubgroups of G. By AutM(G), we mean the subgroup of Aut(G) consistingof all automorphisms which centralize G/M. AutN(G) ...
متن کاملFixing Numbers of Graphs and Groups
The fixing number of a graph G is the smallest cardinality of a set of vertices S such that only the trivial automorphism of G fixes every vertex in S. The fixing set of a group Γ is the set of all fixing numbers of finite graphs with automorphism group Γ. Several authors have studied the distinguishing number of a graph, the smallest number of labels needed to label G so that the automorphism ...
متن کاملNORMAL 6-VALENT CAYLEY GRAPHS OF ABELIAN GROUPS
Abstract : We call a Cayley graph Γ = Cay (G, S) normal for G, if the right regular representation R(G) of G is normal in the full automorphism group of Aut(Γ). In this paper, a classification of all non-normal Cayley graphs of finite abelian group with valency 6 was presented.
متن کاملNORMAL 6-VALENT CLAYEY GRAPHS OF ABELIAN GROUPS
We call a Clayey graph Γ = Cay(G, S) normal for G, if the right regular representation R(G) of G is normal in the full automorphism group of Aunt(Γ). in this paper, we give a classification of all non-normal Clayey graphs of finite abelian group with valency 6.
متن کاملOn the fixed number of graphs
A set of vertices $S$ of a graph $G$ is called a fixing set of $G$, if only the trivial automorphism of $G$ fixes every vertex in $S$. The fixing number of a graph is the smallest cardinality of a fixing set. The fixed number of a graph $G$ is the minimum $k$, such that every $k$-set of vertices of $G$ is a fixing set of $G$. A graph $G$ is called a $k$-fixed graph, if its fix...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008